Constrained Semi-Supervised Learning Using Attributes and Comparative Attributes
نویسندگان
چکیده
We consider the problem of semi-supervised bootstrap learning for scene categorization. Existing semi-supervised approaches are typically unreliable and face semantic drift because the learning task is under-constrained. This is primarily because they ignore the strong interactions that often exist between scene categories, such as the common attributes shared across categories as well as the attributes which make one scene different from another. The goal of this paper is to exploit these relationships and constrain the semi-supervised learning problem. For example, the knowledge that an image is an auditorium can improve labeling of amphitheaters by enforcing constraint that an amphitheater image should have more circular structures than an auditorium image. We propose constraints based on mutual exclusion, binary attributes and comparative attributes and show that they help us to constrain the learning problem and avoid semantic drift. We demonstrate the effectiveness of our approach through extensive experiments, including results on a very large dataset of one million images.
منابع مشابه
Grouping Product Features Using Semi-Supervised Learning with Soft-Constraints
In opinion mining of product reviews, one often wants to produce a summary of opinions based on product features/attributes. However, for the same feature, people can express it with different words and phrases. To produce a meaningful summary, these words and phrases, which are domain synonyms, need to be grouped under the same feature group. This paper proposes a constrained semisupervised le...
متن کاملSemi-supervised Learning of Facial Attributes in Video
In this work we investigate a weakly-supervised approach to learning facial attributes of humans in video. Given a small set of images labeled with attributes and a much larger unlabeled set of video tracks, we train a classifier to recognize these attributes in video data. We make two contributions. First, we show that training on video data improves classification performance over training on...
متن کاملRelational Learning with Gaussian Processes
Correlation between instances is often modelled via a kernel function using input attributes of the instances. Relational knowledge can further reveal additional pairwise correlations between variables of interest. In this paper, we develop a class of models which incorporates both reciprocal relational information and input attributes using Gaussian process techniques. This approach provides a...
متن کاملInteractively Guiding Semi-Supervised Clustering via Attribute-Based Explanations
Unsupervised image clustering is a challenging and often illposed problem. Existing image descriptors fail to capture the clustering criterion well, and more importantly, the criterion itself may depend on (unknown) user preferences. Semi-supervised approaches such as distance metric learning and constrained clustering thus leverage user-provided annotations indicating which pairs of images bel...
متن کاملA Semi-supervised Learning Framework to Cluster Mixed Data Types
We propose a semi-supervised framework to handle diverse data formats or data with mixedtype attributes. Our preliminary results in clustering data with mixed numerical and categorical attributes show that the proposed semi-supervised framework gives better clustering results in the categorical domain. Thus the seeds obtained from clustering the numerical domain give an additional knowledge to ...
متن کامل